当前位置 :首页>教职员工
2004 年 5 月,新加坡国立大学, 电机与计算机工程系, 博士
2000 年 12 月,加拿大多伦多大学, 材料系, 硕士
1999 年 7 月,清华大学, 材料系, 学士
氮化镓功率器件与系统集成(GaN HEMT)
CMOS器件与工艺
新型超高密度存储器
电子陶瓷
2019年,广东省科技创新领军人才
2016年,南方科技大学杰出科研奖
2014年,鹏城学者
2013年,深圳市海外高层次“孔雀计划”
2012年,深圳市政府特殊津贴
2012年,英国工程技术学会,会士
2009年,陈振传学术交流奖
2008年,“南洋”助理教授奖
2007年,Tech Sym. VLSI会议亮点文章
2004年,IEEE 电子器件协会博士生奖学金
部分专利
(1)高电子迁移率晶体管及制备方法 PCT/CN2017/103350 审中
(2)一种场效应晶体管及其制备方法 PCT/CN2019/103910 审中
(3)一种肖特基二极管及其制备方法 PCT/CN2019/103911 审中
(4)半导体器件电极的制作方法及半导体欧姆接触结PCT/CN2020/093855 审中
(5)一种场效应晶体管及其制备方法 201910207646.X 发明专利,授权
(6)一种后栅工艺中的栅极形成方法 201410018494.6 发明专利,授权
(7)一种集成不同厚度金属层以调节功函数的方法 201410018922.5 发明专利,授权
(8)一种增强型高电子迁移率晶体管及其制备方法 201810585676.X 发明专利,授权
(9)片式多层陶瓷电容器用钛酸钡纳米晶的制备方法 201611161737.7 发明专利,授权
(10)一种检测尿路感染致病菌的基因芯片试剂盒及其检测 201610318778.6发明专利,授权
(11)一种GaN HEMT 器件的制备方法 202010393703.0 发明专利,审中
(12)一种AlGaN/GaN 欧姆接触电极及其制备方法和用途 201911100606.1 发明专利,审中
(13)一种III族氮化物晶体管外延结构和晶体管器件 201910849437.5 发明专利,审中
(14)一种增强型氮化镓晶体管及其制备方法 201810507252.1发明专利,审中
(15)一种E/D-mode GaN HEMT集成器件的制备方法 202011360357.2 发明专利,审中
部分文章
(1)M.-Y. Fan, Y. Jiang, G. -Y. Yang, Y. -L. Jiang and H. -Y. Yu, "Very-Low Resistance Contact to 2D Electron Gas by Annealing Induced Penetration Without Spikes Using TaAl/Au on Non-Recessed i-AlGaN/GaN," in IEEE Electron Device Letters, vol. 41, no. 10, pp. 1484-1487, Oct. 2020, doi: 10.1109/LED.2020.3020232.
(2)G. X. Wan et al., "Overshoot stress on ultra-thin HfO2 high-k layer and its impact on lifetime extraction," in IEEE Electron Device Letters, vol. 36, no. 12, pp. 1267–1270, Dec. 2015, doi: 10.1109/LED.2015.2490719.
(3) X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen and H. Y. Yu, "A self-rectifying AlOy bipolar RRAM with sub-50-uA set/reset current for cross-bar architecture," in IEEE Electron Device Letters, vol. 33, no. 10, pp. 1402-1404, Oct. 2012, doi: 10.1109/LED.2012.2210855.
(4)W. J. Liu et al., "Positive Bias-Induced Vth Instability in Graphene Field Effect Transistors," in IEEE Electron Device Letters, vol. 33, no. 3, pp. 339-341, March 2012, doi: 10.1109/LED.2011.2181150.
(5)G. Zhou et al., "Determination of the Gate Breakdown Mechanisms in p-GaN Gate HEMTs by Multiple-Gate-Sweep Measurements," in IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 1518-1523, April 2021, doi: 10.1109/TED.2021.3057007.
(6)L. Wang, G. Xia and H. Yu, "A Method to Determine Dielectric Model Parameters for Broadband Permittivity Characterization of Thin Film Substrates," in IEEE Transactions on Electromagnetic Compatibility, vol. 63, no. 1, pp. 229-236, Feb. 2021, doi: 10.1109/TEMC.2020.2989227.
(7)Y. Qi et al., "Evaluation of LPCVD SiNx Gate Dielectric Reliability by TDDB Measurement in Si-Substrate-Based AlGaN/GaN MIS-HEMT," in IEEE Transactions on Electron Devices, vol. 65, no. 5, pp. 1759-1764, May 2018, doi: 10.1109/TED.2018.2813985.
(8)He, J., Cheng, W.-C., Wang, Q., Cheng, K., Yu, H., Chai, Y., Recent Advances in GaN-Based Power HEMT Devices. Adv. Electron. Mater. 2021, 7, 2001045. https://doi.org/10.1002/aelm.202001045
(9)Luo, D., Li, X., Dumont, A., Yu, H., Lu, Z.-H., Recent Progress on Perovskite Surfaces and Interfaces in Optoelectronic Devices. Adv. Mater. 2021, 33, 2006004. https://doi.org/10.1002/adma.202006004.
(10)J. Zhang et al., “Impact of high temperature H2 pre-treatment on pt-AlGaN/GaN HEMT sensor for H2S detection,” Sens. Actuators B, Chem., vol. 280, pp. 138–143, Feb. 2019, doi: 10.1016/j.snb.2018.10.052.
(11)Sokolovskij R, Zhang J, Iervolino E, Zhao C, Santagata F, Wang F, Yu H, Sarro PM, Zhang GQ. Hydrogen sulfide detection properties of pt-gated AlGaN/GaN HEMT-sensor. Sens. Actuators B Chem. 2018;274:636-644. https://doi.org/10.1016/j.snb.2018.08.015
(12)F. Zeng, J.X. An, G. Zhou, W. Li, H. Wang, T. Duan, L. Jiang, H. Yu, A comprehensive review of recent progress on GaN high electron mobility transistors: devices, fabrication and reliability, Electronics 7 (2018) 377, https://doi.org/10.3390/ electronics7120377
专著:
(1) H.Y. Yu. Hafnium: Chemical Characteristics, Production and Applications, Nova Science Publishers, 2014.
(2) H.Y. Yu*. Electrical properties of ultrathin hafnium-based high-K dielectrics and their applications insub-22 nm CMOS devices, Nova Science Publishers, 2014.
(3) J.S. Li, H.Y. Yu*. Enhancement of Si-based solar cell efficiency via nanostructure integration, Springer, 2011.
(4) H.Y. Yu*. Metal Gate Electrode and High-K Dielectrics for Sub-32 nm Bulk CMOS Technology: Integrating Lanthanum Oxide Capping Layer for Low Threshold-Voltage Devices Application, IN-TECH, 2010.